Dear Member of Congress,

We the undersigned urge you to accelerate our transition to a clean energy economy with the ambition of an Apollo or Manhattan program, by dramatically increasing America's investment in innovative new energy technologies and systems.

A wide range of policies aimed at increasing conservation, efficiency, and reducing emissions is vital, but carbon prices and regulations alone will not create new, clean and affordable energy systems soon enough or at the scale needed.

America should be ramping up to invest a minimum of $30 billion per year to develop, demonstrate, and stimulate the commercialization of a range of technologies and approaches that can provide affordable carbon-neutral energy and use that energy more wisely. This is less than half of what America already invests in military research and development.
The United States is in a unique position to take the lead in this research and development effort, but we must work with others. The world, including China, India and other developing nations, needs affordable clean technologies now to avoid the lock-in of massive carbon emissions from conventional coal plants.

Energy sources available today cannot provide enough power to drive economic growth without damaging our climate system. We cannot predict with confidence which energy technologies will win in a future marketplace. For this reason, we need a diverse and strategically selected portfolio of investments. Potential solutions need to be explored and tested with hardware. Because the taxpayer dollar should be invested wisely, a relatively open process should be established that will select and support research and development projects based on technical merits.

Public investment in clean energy will more than pay for itself, just as did the U.S. government investment in computer science and aerospace during the 1950s and ‘60s. Much of our economic growth since World War II resulted from technological developments that were accelerated and incubated by public investment – the Internet being only one example. Particularly critical are technologies that can be commercialized in five to twenty-five years — too long for venture capital, too short for basic research. Private firms are not making — and cannot be expected to make – the necessary level of long-term investments in energy and energy infrastructure research and development.

The major problems confronting the nation and world require clean, secure, and affordable energy.

Sustained public investment now in a diverse portfolio of energy technologies will reduce climate risk, increase energy security, revitalize education, enhance our competitiveness, and strengthen the American economy.

Sincerely*,

*Organizations listed for identification purposes only
Martin Hoffert
Department of Physics, New York University

Ken Caldeira
Carnegie Institution / Stanford University

John Katzenberger
Aspen Global Change Institute

David Archer
Department of Geophysical Sciences, University of Chicago

Maurice Averner
Ames Research Center, NASA

Scott Barrett
School of Advanced International Studies, Johns Hopkins University

Gregory Benford
Department of Physics, University of California, Irvine

Baruch Blumberg (Nobel laureate)
Fox Chase Cancer Center / University of Pennsylvania

Paul Crutzen (Nobel laureate)
University of California (San Diego) / Max Planck Institute for Chemistry

William Fulkerson
Institute for a Secure and Sustainable Environment, University of Tennessee

Christopher Green
Department of Economics, McGill University

Susan Hassol
Climate Communication

Eric Hoffert
Versatility Inc.

Thomas Homer-Dixon
Trudeau Center for Peace and Conflict Studies, University of Toronto

Feng Hsu
Goddard Space Flight Center, NASA

Mark Jacobson
Civil and Environmental Engineering, Stanford University

David Keith
Institute for Sustainable Energy, Environment and Economy, University of Calgary

Geoffrey Landis
Glenn Research Center, NASA

*Organizations listed for identification purposes only
Jane C. S. Long
hydrogeologist and geotechnical engineer

Michael MacCracken
Climate Institute, Washington, DC

John C. Mankins
Sunsat Energy Council / Managed Energy Technologies

Michael E. Mann
Earth System Science Center, Pennsylvania State University

Gregg Marland
International Institute for Applied Systems Analysis

Mark Nelson
Institute of Ecotechnics, Santa Fe, NM

Darel Preble
Space Solar Power Institute, Georgia Institute of Technology

Gregory H. Rau
Institute of Marine Sciences, University of California, Santa Cruz

Steve Rayner
Said Business School, Oxford, UK

Kim Stanley Robinson
Author, “Forty Signs of Rain”

Gregory Dennis Sachs
Alternative Power Program, US Merchant Marine Academy

Thomas Schelling (Nobel laureate)
Department of Economics, University of Maryland

Michael Schlesinger
Atmospheric Sciences, University of Illinois, Urbana-Champaign

Steven E. Schwartz
Brookhaven National Laboratory, Department of Energy

John Turner
National Renewable Energy Laboratory, Department of Energy

Tyler Volk
Department of Biology, New York University

Tom M. L. Wigley
National Center for Atmospheric Research

Steven C. Wofsy
School of Engineering and Applied Science / Department of Earth and Planetary Science, Harvard University

Lowell Wood
Hoover Institution / Stanford University

*Organizations listed for identification purposes only