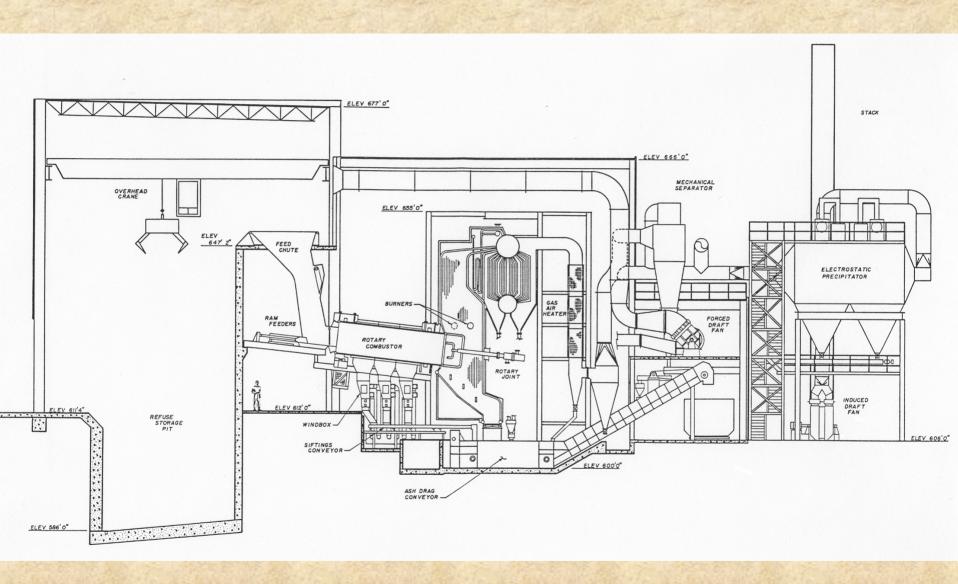
The Conversion of a Municipal Solid Waste Boiler Plant to Burn Alternate Fuels

Jon B. Belcher, PE
Thermal Engineering Group, Inc.

Background

- 200 ton per day waste-to-energy plant located in Gallatin, Tennessee
- Construction completed in late 1981
- Start-up & commissioning took place in February 1982
- Serves all of Sumner County, Tennessee
- Owned & managed by the Resource Authority in Sumner County


Background (continued)

- \$10.2 million construction cost
- Plant supplies steam to area industries
- 550 kW turbine generator for sale of electricity to the Tennessee Valley Authority

Plant Equipment

- Fuel storage pit with an overhead crane
- Two combustion trains
 - Rotary waterwall combustor
 - Waterwall boiler rated at 27,000 lb/hr @ 525°F/425
 psig
 - Forced draft fan
 - Induced draft fan
 - Cyclone separator
 - Electrostatic Precipitator
 - Stack

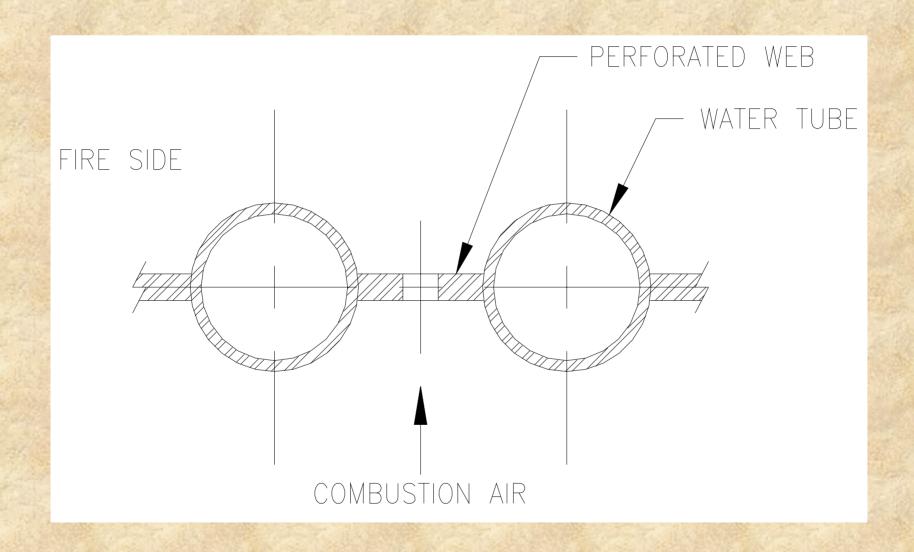
Waste-to-Energy Operations

- Consistent operations since Feb. 1982
 - exception of maintenance/inspections
 - two pit fires
- EPA promulgated revised air regulations for waste-to-energy plants with a compliance date of May 2005 for the Gallatin facility
- To meet acid gas emissions, new regulations would require:
 - New wet or dry scrubbers
 - New baghouses

Waste-to-Energy Operations (continued)

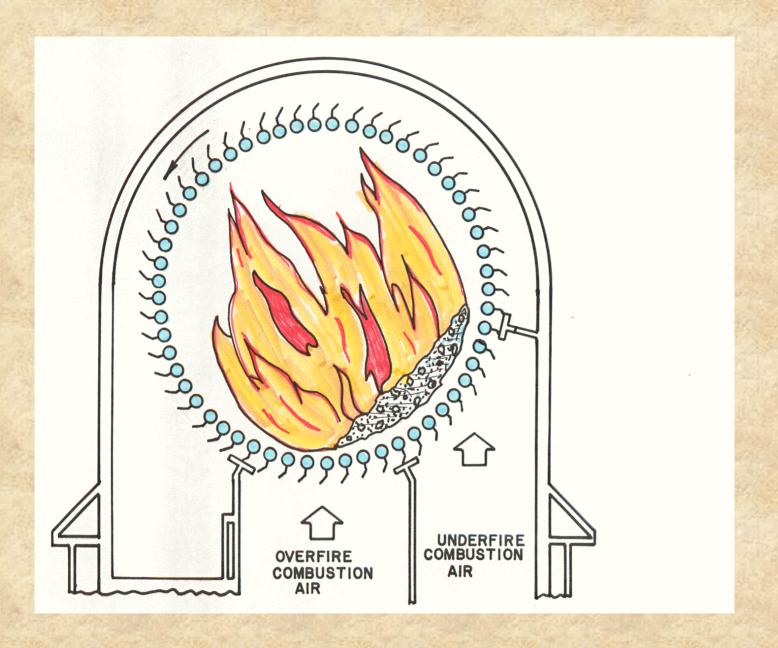
- · Based on:
 - potential capital expenses
 - current operation costs vs. landfilling
- Resource Authority made decision to cease waste-to-energy operations

Operations Changes Hands


- Resource Authority approached by TVI of Youngstown, Ohio
 - Lease the plant
 - Assume operations on wood fuel
- Preliminary discussions between TVI, Resource Authority and steam customers
- · Temporary, short term agreement reached

Operations Changes Hands (continued)

- TVI brought in TTI Technologies of Omaha, Nebraska as equity partner
- Gallatin Thermal, LLC formed
- Revised air permit submitted
- TTI Technologies assumed sole ownership of Gallatin Thermal, LLC


Wood Fuel Process Changes

- Rotary combustor:
 - Unique technology
 - 80" diameter cylinder x ~15 Ft long
 - Constructed of alternating water tubes and perforated webbing
 - Water is circulated through combustor tubes
 - Combustor tubes connected to the boiler water circuit
 - Combustor accounts for ~ 20% of total unit steam production

Wood Fuel Process Changes (continued)

- Rotary Combustor (continued)
 - Rotates @ 1/6 rpm
 - Sloped at 6° from horizontal
 - Combustion air is split into separate, controlled air zones
 - transverse controlled underfire & overfire areas
 - longitudinal areas along fuel path

Wood Fuel Process Changes (continued)

- No equipment changes required
- Some repairs/maintenance required
 - Air heater
 - Seals

Wood Fuel Air Permit Changes

- Rotary combustor is unique technology
- Rotary combustors exist in U.S. and worldwide in limited numbers
- No basis established for emissions from wood combustion in rotary combustor
- Tennessee Dept. of Environment and Conservation (TDEC) granted a limited permit
- Emissions testing required before issuance of final operating permit

Existing Temporary Air Permit

- Items which can be burned:
 - Yard waste & clean wood:
 - Grass, grass clippings, bushes, shrubs
 - Untreated clean wood:
 - Lumber, tree stumps, tree limbs
 - Pallets made from untreated, clean wood

Existing Temporary Air Permit (continued)

- Items which can not be burned:
 - MSW or municipal type solid wastes
 - Defined as materials discarded by households, commercial/retail establishments or institutions
 - Refuse-derived fuels
 - Used oil
 - Sewage sludge
 - Demolition wastes
 - Treated or painted wood
 - Any wood containing glues (plywood, pressboard)

Existing Temporary Air Permit (continued)

- Items which can not be burned: (continued)
 - No paper products, cardboard or newspapers
 - Plastics, synthetic materials, vinyl
 - Roofing materials
 - Paints
 - Chemicals

Wood Operational Changes

- Fuel Throughput
 - MSW BTU rating: 4,500 Btu/Lb (nominal)
 - Wood BTU rating: 4,500 Btu/Lb based on wet,
 green wood
 - Throughput should remain relatively unchanged
- Wood must be shredded or chipped due to retention time and resulting burn-out

Wood Operational Changes (continued)

- Fuel Source
 - Initially from Resource Authority yard waste operations
 - Poor quality due to moisture, decomposition and inerts
 - Wood fuel suppliers (interim)
 - Gallatin Thermal Operations
 - Private county haulers and City of Gallatin
 - Require shredder

Wood Operational Changes (continued)

- Gallatin Thermal purchased & installed a used shredder
 - Two, 200 hp electric motors
 - associated conveyors

Wood Summary

- Since August of 2005, Gallatin Thermal has received ~ 30,000 tons of wood at a cost of ~\$276,000
- Equates to:
 - -\$9.20/ton
 - \$1/mmbtu @ 4500 Btu/Lb
- Cost includes purchased wood, however current costs are lower than this

Wood Summary (continued)

 Gallatin Thermal plans on structuring the wood shredding operations with a nominal tipping fee to result in a zero net fuel cost

Future Fuels

- Tire-Derived Fuel (TDF)
 - Currently being pursued by Gallatin Thermal
 - High BTU, low moisture fuel source
 - BTU content ~15,500 Btu/Lb based on information from the Rubber Manufacturers Association, Scrap Tire Management Council

- Tire-Derived Fuel (continued)
 - Minimal research exists on burning TDF with wood
 - Two studies:
 - Air Emissions from Scrap Tire Combustion;
 October 1997
 - Burning Tires for Fuel and Tire Pyrolysis: Air Implications; December 1991
 - Both studies conducted for the EPA

- Tire-Derived Fuel (continued)
 - Overall, the EPA studies concluded favorable results to combining TDF with other fuels as long as the combustion took place in a controlled environment and high efficiency air pollution control equipment is employed (i.e., a baghouse or electrostatic precipitator)
 - However, very little of the data can be correlated to the
 % of TDF burned and resulting emissions rates
 - Some criteria pollutants not tested or not tested for all percentages of TDF

- Air Permit Challenges
 - No reliable emission rate data available, therefore estimated emissions have to be developed for permit submission
 - Some emissions taken from facilities cited in two EPA reports
 - Other emissions based on calculations
 - Are tires defined as a "municipal" waste?

 Permit changes to allow burning of TDF submitted & currently under review by TDEC

Future Fuels (continued) Proposed Wood & TDF Mixture per Unit

	Btu/Lb	Mixture, % by BTU content	Equiv. Heat Input, mmbtuh	Equiv. Mass Input, Lb/Hr	% by weight	Equiv. Mass Input, Ton/Yr	Equiv. Btu/Lb
TDF	15,500	18.8	7.08	456.6	6.3	2,000.0	
Wood	4,500	81.2	30.52	6,782.7	93.7	29,708.4	
TOTAL		100.0	37.6	7,239.4	100.0	31,708.4	5,194

Other Alternate Fuels

- Long Term Goal: investigate other potential alternate fuels
 - On-spec used oil
 - Asphalt shingles & roofing materials
 - Treated wood & wood containing glues
 - Sawdust
 - Automobile fluff

Summary

- Conversion from MSW to wood successful
- Conversion from wood to wood + TDF underway and expected to be successful
- Other alternate fuels will be explored but will have to provide an economic and environmental benefit

Thank You for Your Time & Attention