This is the fifth in a series on how we can build an energy future based on our best science and no longer critically dependent upon exhaustible and polluting fossil fuels.

Promoting battery and plug-in hybrid electric vehicles

Governments can play a key role in promoting electric vehicles by buying electric vehicles en masse and helping develop battery electric and plug-in hybrid electric fleets and fleet systems. With current technology, battery electric trucks could already function as postal delivery trucks. Beyond the gasoline hybrid, government service vehicles should be mandated to be electric or PHEV/EREVs with few exceptions. As is proposed in a recent bill in Congress, government can offer tax incentives or rebates to individuals and corporations for buying individual or fleets of electric vehicles. Government can also provide the test bed for developing quick-charge and battery swap systems, especially with fleet vehicles.

Public trickle charge locations at 110/220 volts, quick-charge stations at 480 volts and battery exchange infrastructure are other areas where local, state and national policy can make a difference. The standardization of public charge plugs, for instance, will allow electric vehicle manufacturers to make vehicles with a higher value to the end consumer, by allowing any vehicle to charge at any public charging station. Government and industry may also need to standardize the battery pack-to-vehicle interface to allow interoperability between more battery packs and more electric vehicles with battery pack exchange capability. Low-interest loans may also enable electric utilities and property owners to install an electric account-linked or pay-per-charge vehicle charging infrastructure of the near future in multifamily dwellings and paid parking structures.

Aviation, marine, and special use fuels

The energy density (the energy content to weight ratio) and energy storage capacity of liquid hydrocarbons will remain for the foreseeable future vital for ships, aviation, remote environments, and applications where the substantial heat byproduct of an internal combustion engine is desirable. In these contexts, petroleum products will continue to be dominant until we have developed ways to produce bio- or synthetic fuels that do not substantially interrupt food supplies, exhaust water supplies, or endanger the fertility of soils. Luckily, our use of petroleum as a transport fuel is driven five to one by on-land use, so we will reduce our petroleum demand and our greenhouse gas emissions by transitioning to the Renewable Electron Economy as rapidly as possible.

Concentrated and smarter settlement patterns

Peak Oilers predict with steep rises in oil prices that suburbia will depopulate and collapse.

“Peak Oilers” predict with steep rises in oil prices that suburbia will depopulate and collapse.

When those who have long predicted a rapid escalation in oil prices with severe social and economic effects turn to advocating solutions, they suggest that ultimately a post-oil society will have a stronger community focus than the anomie of suburban and widely dispersed rural settlements. James Howard Kunstler, who envisions the collapse of suburbia after a catastrophic rise in oil prices, advocates for what might be called a new urbanism or smart growth, where people live in more tightly concentrated but humanely designed cities and towns.

There is however a contradictory current within the same group, which suggests that people will need to become more self-reliant, growing their own food, preparing to become more self-sufficient autonomous units that do not require petroleum-based transportation to live. Such a current would suggest that people would use land in a more distributed manner, allowing for larger garden plots around living spaces perhaps leading to an new survivalist agrarianism.

The two contrasting scenarios proposed are based on two different notions of what is ultimately a more resource and energy efficient way to live: More concentrated settlement is built around more efficient consumption while somewhat more distributed settlement suggests that production and consumption should co-exist in the same space. It is unknown the degree to which one or the other of these visions will predominate in the near and medium-term futures.

The tripartite approach to electrifying transport concentrates some transport tasks along main electrified rights of way while leaving open the degree to which people and the machines they operate can range off of the grid using batteries or liquid fuels. Demand for transport and goods traffic along these main corridors will remain high even in times of crisis or in a theoretically more dispersed population of part-time farmers. Neither more efficient consumption nor a commingling of consumption and production is necessarily favored. I have explored in one installment of my series on the Renewable Electron Economy the possibility for farmers to use electricity to do many farming tasks that are now petroleum dependent.

In any case, it is premature to predict massive internal migrations and collapse of whole economies as oil prices continue to climb, especially if these three paths towards electrifying land transportation are pursued aggressively and effectively by government and industry in the next few years. Additionally short-term measures to increase the efficiency of our transport system as outlined above can be implemented rapidly by a combination of public agencies and private companies that recognize opportunities to provide people with more effective and more efficient transport choices even in an era of more expensive energy.